Action Mechanism Research of Lanthanons to Slow Vacuolar Ion Channels in Raphanus Satirus L. (Xinlimei) Radish by Patch-Clamp

Pin YANG¹*, Yan Fang SHANG¹, Zhen Ming PEI²

¹Institute of Molecular Science, Shanxi University, Taiyuan 030006 ²Department of Biology, Duke University, Durham, NC 27708

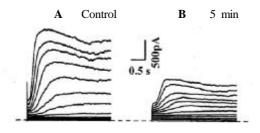
Abstract: We used whole-vacuolar patch-clamp recording mode to study the action mechanism of La^{3+} to Slow Vacuolar (SV) channels for the first time. We recorded SV channel currents of Xinlimei (Raphanus satirus L.) vacuolars. The minimum activation potentials of voltage-dependent SV channels lied in 25±5 mV. The increase in cytoplasmic Ca²⁺ led to enhancement of SV-type currents. It was found that the threshold potential of activation shifted towards more depolarized values whenever cytoplasmic Ca²⁺ was increased. When 10⁻¹⁰ mol/L free La³⁺ was added to the bath, SV-type current was suppressed by 60~75%. These data showed La³⁺ reduced ion permeabilities of Xinlimei root vacuolar membrane.

Keywords: Whole-vacuolar recording, SV-type current, cytoplasmic Ca²⁺, La³⁺, Patch-Clamp.

Rare earth fertilizers were applied widely in China. They were employed by 3.3×10^6 hm² every year and the production of crops increased up to 10^9 kg. The economic benefit is huge, but the action mechanism of these fertilizers is not clear yet¹. The distributions of rare earth elements in plant cell were still disputed. Because lanthanons in organism were in minute quantities $(10^{-10} \sim 10^{-8} \text{ in mass percentage})$, it was necessary to choose a sensitive and exact analytical method.

In recent years Patch-Clamp technique was used to study membrane ion channels as an effective method. The investigations with Patch-Clamp techniques have shown that ion channels and pumps as pathways for the movement of ions and metabolites². As we know, SV channels are cation selective channels with poor selectivity among monovalent cations (K⁺, Na⁺ and Cs⁺) and divalent cations (Ca²⁺, Mg²⁺ and Ba²⁺)³. Voltage- and time-dependent SV channels are activated by cytosolic Ca^{2+ 4}. Since RE³⁺ and Ca²⁺ have many similar chemical properties, it is very important to study the biological and physical properties of SV ion channels and action mechanism of RE³⁺ to SV channels.

Results and Discussion


XinLiMei vacuoles were isolated according to the literature 2. We first recorded the SV channel currents of XinLiMei vacuoles (n >40). The minimum activation potentials of voltage-dependent SV channels were 25 ± 5 mV. Secondly we studied calcium-

^{*} E-mail: yangpin@sxu.edu.cn

Pin YANG et al.

dependent property of SV channels. We found in the absence of cytosolic Mg^{2+} , cytosolic Ca^{2+} at less than 10 μ mol/L did not activate SV channel currents. The increase in free Ca^{2+} from 10⁻⁵ to 4×10^{-3} mol/L led to the increase of SV-type currents and the decrease of activation potentials. We concluded that a high concentration of cytosolic Ca^{2+} alone can bind to both high-affinity Ca^{2+} binding site and low-affinity binding site on the cytosolic side which can be occupied by either Mg^{2+} or Ca^{2+} .

Figure 1 The inhibitory effect of cytosolic free La³⁺ to SV-type channels

When we added free La^{3*} (10⁻¹⁰ mol/L) to the bath, the maximum activation current reduced from 1640 PA in the control to 539 PA after 5 min. The inhibitory effect of cytosolic free La^{3*} to SV-type channels was very obvious and current was suppressed by 67.1% (**Figure 1**). Based on these results, we surmised that free La^{3+} and high-affinity channel proteins on the cytosolic side combined to form a kind of binding-protein which inhibits SV-type channel current. Our findings indicated that $LaCl_3$ decreased ion permeabilities of Xinlimei root vacuolar membrane. Action mechanism researches of other rare earth ions to SV type channels are going on.

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China and Provincial Natural Science Foundation of Shanxi.

References

- 1. B. S. GUO, Rare Earth (in Chinese), 1999, 20 (1), 64.
- 2. R. Hedrich, E. Neher, *Nature*, **1987**, *329*, 833.
- 3. Z. M. PEI, M. W. John, *Plant Physiology*, **1999**, *121*, 977. J. M. Ward, J. I. Schroeder, *Plant Cell*, **1994**, *6*, 669.

Received 15 January, 2001